

Clustering On dynamic networks

Zhongjing Yu

Data Mining Lab, Big Data Research Center, UESTC Email: yuzhongjing@foxmail.com http://staff.uestc.edu.cn/yuzhongjing

为什么选这个题目(网络\图流上的聚类):

静态网络上的聚类很早就被广泛关注,各种方法相应提出。然而, 现实生活中也存在这大量的动态网络,即随着时间的变化网络的结构 会因点和边的变化而变化,特别是近年来随着网络的快速发展。在学 术界大约在2010年左右大家也开始关注动态网络聚类的研究.动态网络 也大体分为两种[1]:缓慢的演化和快速的演化。这里偏向的是快速的 演化(流形式)。

在动态网络的演化过程中,由于数据的量大,速度快,必须使得 聚类算法更加高效。然而,这里不能用传统的方法直接对每个时刻直 接一步到位的得到社团结构,因此采用的是一种基于微簇的聚类方法, 即先将数据进行粗略的聚类,得到一些微簇,再将微簇进行进一步的 聚类。该topic通过从很经典的FacetNet (2009)算法讲起,直到2014年 左右的比较经典的网络流聚类算法。

[1] Evolutionary Network Analysis : A Survey. ACM Computing Surveys, 2014

前沿推荐:

在网络流方面的算法是比较多的,不仅可以从上述的数据挖掘 的角度来看,还可以从机器学习的角度来看。机器学习方面通常包括 根据矩阵和数理统计的方面做,但是由于矩阵的角度做的话有两个实 际的局限:存储(矩阵的存储对机器的要求较高)和线性操作(矩阵 的操作只能是线性的操作,非线性的操作可能要借助核等,但这对网 络流来说,复杂度通常很高)。因此,本人更偏向与数理统计。近几 年对于社团发现(不仅限于社团发现)比较流行的统计方面的方法是随 机块模型(Stochastic Block Model)[1][2][3][4][5]。

注:这部分需要一定的统计或概率知识(Dirichlet 过程等)。

[1]. Community detection on Evolution Graphs. NIPS 2016

[2]. Stochastic Block Transition Models for Dynamic Networks. AISTATS 2015

[3]. Integrating Community and Role Detection in Information Networks. (Yizhou Sun group).

[4].Graph Clustering Block-model and model free results. NIPS 2016.

[5]. Community Detection on Evolving Graphs. NIPS 2016.

Outline

Background

Clustering algorithms based on dynamic networks(graph stream)

- ➢ FacetNet[Yu-RL et al. WWW'08]
- > A particle-and-density ~~[Yuan et al. CIKM'13]
- Based on skeletal (Pei L et al. ICDE'14)
- Local Weighted-Edge-based Pattern(LWEP)[ICDM'13]

• Background

Clustering——static networks

overlapping communities

Background

Clustering—dynamic networks(slow evolution networks)

Background

Clustering—dynamic networks(graph steam)

Initial Given a graph G = (E, V)

Time evolution New nodes, and new edges are added/deleted to the graph.

Notice : as time increasing, new edges may be same with older edges in different time. (Data set like DBLP).

Clustering based on based on dynamic networks

Clustering based on dynamic networks FacetNet

Basic Idea: communities not only generate evolutions, they also are

regularized by the **temporal smoothness of evolutions**.

Method: it will discover communities that jointly maximize the fit to

the observed data and the temporal evolution via NMF.

Clustering based on dynamic networks FacetNet(detail)

The **community structure** provides evidence about community evolutions and at the same time, the **evolutionary history offers hints** on what community structure is more appropriate.

Construct cost function:

FacetNet(detail)

(Where c_1, c_2 is clusters. p_k is prior probability)

 $w_{ij} \approx \sum_{k=1}^{m} p_k \cdot p_{k \to i} \cdot p_{k \to j} \implies W \approx X\Lambda X^{T}$ $\mathcal{CS} = D(W || X\Lambda X^{T})$

FacetNet(detail)

--- Temporal Cost

Preventing unreasonably dramatic community evolution from time t-1 to t.

The community structure is captured by $X\Lambda$

 $Y \doteq X_{t-1}\Lambda_{t-1}$ (Y : community structure at t-1.)

Assumption: the number of communities is fix.

Clustering based on dynamic networks FacetNet(detail)

$$cost = \alpha \cdot D(W \| X \Lambda X^T) + (1 - \alpha) \cdot D(Y \| X \Lambda)$$

$$\begin{aligned} x_{ik} \leftarrow x_{ik} \cdot 2\alpha \cdot \sum_{j} \frac{w_{ij} \cdot \lambda_k \cdot x_{jk}}{(X\Lambda X^T)_{ij}} + (1-\alpha) \cdot y_{ik} \\ \text{then normalize such that } \sum_{i} x_{ik} = 1, \forall k \\ \lambda_k \leftarrow \lambda_k \cdot \alpha \cdot \sum_{ij} \frac{w_{ij} \cdot x_{ik} \cdot x_{jk}}{(X\Lambda X^T)_{ij}} + (1-\alpha) \cdot \sum_{i} y_{ik} \\ \text{then normalize such that } \sum_{k} \lambda_k = 1. \end{aligned}$$

FacetNet(extensions)

Inserting and removing Nodes:

operation of matrix(remove or insert rows).

Changing community numbers:

deviation between the change for edges among communities

$$Q(\mathcal{P}_m) = \sum_{k=1}^{m} \left[\frac{\mathcal{A}(V_k, V_k)}{\mathcal{A}(V, V)} - \left(\frac{\mathcal{A}(V_k, V)}{\mathcal{A}(V, V)} \right)^2 \right]$$
$$\mathcal{A}(V_p, V_q) = \sum_{i \in V_p, j \in V_q} w_{ij}$$

Soft Modularity Qs to get m(clusters)

Optimize :
$$Q_s = Tr\left[(D^{-1}X\Lambda)^T W (D^{-1}X\Lambda) \right]$$

 $-\vec{1}^T W^T (D^{-1}X\Lambda) (D^{-1}X\Lambda)^T W \vec{1}$

FacetNet(extensions)

If the number of cluster is change, estimating members of clusters.

$$cost = \alpha \cdot D(W || X\Lambda X^T) + (1 - \alpha) \cdot D(Z || X\Lambda X^T)$$

$$Z \doteq X_{t-1}\Lambda_{t-1} X_{t-1}^T$$
Compare structure of networks
instead of community structure.
$$x_{ik} \leftarrow x_{ik} \cdot \sum_j \frac{(\alpha \cdot w_{ij} + (1 - \alpha) \cdot z_{ij}) \cdot \lambda_k \cdot x_{jk}}{(X\Lambda X^T)_{ij}}$$
then normalize such that $\sum_i x_{ik} = 1, \forall k$
 $\lambda_k \leftarrow \lambda_k \cdot \sum_{ij} \frac{(\alpha \cdot w_{ij} + (1 - \alpha) \cdot z_{ij}) \cdot x_{ik} \cdot x_{jk}}{(X\Lambda X^T)_{ij}}$
then normalize such that $\sum_k \lambda_k = 1.$

A Particle-and-Density Based Evolutionary Clustering Method for Dynamic Networks [VLDB'09](Jiawei Han group)——P&D(shorted)

View: observing objective edges over time instead of snapshot at special time.

Basic Idea: To collect lots of **particles** (*a*) called nano-communities and a community as a **densely connected subset of particles** , called *I-KK* (*b*) that guide the trend of evolution. In order to get **local clusters**, a density-based method is proposed by using **optimal modularity** (*c*) .

P&D

(a) nano-communities (observing the trend of evolution)

Definition 2. The nano-community NC(v, w) of two nodes $v \in V_{t-1}$ and $w \in V_t$ is defined by a sequence [N(v), N(w)]having a non-zero score for a similarity function $\Gamma : N(\cdot) \times N(\cdot) \to \mathbb{R}$.

$$\Gamma_E(N(v), N(w)) = \begin{cases} 1 & \text{if } v \in N(w) \text{ and } w \in N(v) \\ 0 & \text{otherwise} \end{cases}$$

G_t(current)

G_{t-1}

Definition :

A community of *I-KK* is definitely the densest one among all communities of the same partite sizes.

To measure the similarity between I-KK.

$$\Theta_K(M_t) = \frac{2|E_{M_t}|}{|V_{M_t}|(|V_{M_t}|-1)} \qquad \Theta_{KK}(B_{t-1,t}) = \frac{|L_{B_{t-1,t}}|}{|V_{M_{t-1}}||V_{M_t}|}$$

P&D

(c) clustering(at a snapshot)

Basic idea: for a snapshot, community structure reflects not only on **current edges**, but also **historic structure**. Because evolution network is **smooth**.

P&D

(c) clustering(at a snapshot)

 $d_0(v, w)$ denote distance between nodes at t

P&D

$$d'_t(v,w) = \alpha \cdot \{ d_O(v,w) - d_{t-1}(v,w) \} + d_{t-1}(v,w)$$

$$\sigma'_t(v,w) = \alpha \cdot \{\sigma_t(v,w) - \sigma_{t-1}(v,w)\} + \sigma_{t-1}(v,w)$$

$$\sigma(v,w) = \frac{|N(v) \cap N(w)|}{\sqrt{|N(v)| \times |N(w)|}}$$

DBSCAN

Definition 3. The ε -neighborhood $N_{\varepsilon}(v)$ of a node $v \in V_t$ is defined by $N_{\varepsilon}(v) = \{x \in N(v) \mid \sigma'_t(v, x) \ge \varepsilon_t\}.$

Definition 4. A node $v \in V_t$ is called a *core node* w.r.t. ε_t and μ_t if $|N_{\varepsilon}(v)| \ge \mu_t$.

Definition 5. A node $x \in V_t$ is *direct reachable* from a node $v \in V_t$ w.r.t. ε_t and μ_t if (1) v is a core node and (2) $x \in N_{\varepsilon}(v)$.

Definition 6. A node $v_j \in V_t$ is *reachable* from a node $v_i \in V_t \ w.r.t. \ \varepsilon_t$ and μ_t if there is a chain of nodes $v_i, v_{i+1}, \ldots, v_{j-1}, v_j \in V_t$ such that v_{i+1} is direct reachable from v_i $(i < j) \ w.r.t. \ \varepsilon_t$ and μ_t .

Definition 7. A node $v \in V_t$ is *connected* to a node $w \in V_t$ w.r.t. ε_t and μ_t if there is a node $x \in V_t$ such that both v and w are reachable from x w.r.t. ε_t and μ_t .

Modularity Clustering

Incremental cluster evolution tracking from highly dynamic network data [ICDE'14]

Basic Idea: Authors want to observe network evolution from subgraph view, which summarized via **skeletal graph** in **fading time window** as time pass.

Processing:

(1) Networks construction(weight of edge)— $-G_t$

$$S_F(p_i, p_j) = \frac{|p_i^L \cap p_j^L|}{|p_i^L \cup p_j^L| \cdot e^{|p_i^\tau - p_j^\tau|}}$$

Where p_i is node *i*, p_i^L is neighbors of node *i*, p_i^{τ} is timestamp.

If $S_F(p_i, p_j) > \lambda$, then build edge.

(2) Skeletal network construction— $-\overline{G_t} = Ske(G_t)$

Definition 3: Given a post $p = (L, \tau, a)$ in post network $G_t(V_t, E_t)$ and similarity threshold ε , the *priority* of p at moment t $(t \ge p^{\tau})$, is defined as

$$w^{t}(p) = \frac{1}{e^{|t-p^{\tau}|}} \sum_{q \in \mathcal{N}(p)} S_{F}(p,q)$$
(2)

where $\mathcal{N}(p)$ is the subset of p's neighbors with $S_F(p,q) > \varepsilon$.

Node:

- A post p is a core post if $w^t(p) \ge \delta$;
- It is a *border post* if w^t(p) < δ but there exists at least one core post q ∈ N(p);
- It is a *noise post* if it is neither core nor border, i.e., $w^t(p) < \delta$ and there is no core post in $\mathcal{N}(p)$.

Node:

- A post p is a core post if $w^t(p) \ge \delta$;
- It is a *border post* if $w^t(p) < \delta$ but there exists at least one core post $q \in \mathcal{N}(\mathcal{G})$,
- It is a *noise post* if it is neither core nor border, i.e., $w^t(p) < \delta$ and there is no core post in $\mathcal{N}(p)$.

Node:

- A post p is a core post if $w^t(p) \ge \delta$;
- It is a *border post* if w^t(p) < δ but there exists at least one core post q ∈ N(p);
- It is a *noise post* if it is neither core nor border, i.e., $w^t(p) < \delta$ and there is no core post in $\mathcal{N}(p)$.

Edge:

Core posts connected by edges with similarity higher

than ε will form a summary of $G_t(V_t, E_t)$, that we call the

skeletal graph.

Processing:

Definition 5: Given $G_t(V_t, E_t)$ and the corresponding skeletal graph $\overline{G}_t(\overline{V}_t, \overline{E}_t)$, a skeletal cluster \overline{C} is a connected component of \overline{G}_t . A post cluster is a set of core posts and border posts generated from a skeletal cluster \overline{C} , written as $C = Gen(\overline{C})$, using the following expansion rules:

- All posts in \overline{C} form the core posts of C.
- For every core post in C, all its neighboring border posts in G_t form the border posts in C.

Update Networks

- \checkmark Add node *i*, **update** G_0 $S_F(p_i, p_j) = \frac{|p_i^L \cap p_j^L|}{|p_i^L \cup p_j^L| \cdot e^{|p_i^\tau - p_j^\tau|}}$ $\overline{\boldsymbol{G}_{\boldsymbol{0}}} \quad w^{t}(p) = \frac{1}{e^{|t-p^{\tau}|}} \sum S_{F}(p,q)$ $q \in \mathcal{N}(p)$ *C*, *C* :
- ✓ Capture network evolution

Dynamic Community Detection in Weighted Graph Streams [ICDM'13](Philip S. Yu group)

Local Weighted-Edge-based Pattern(LWEP)

Basic Idea: In order to detect communities under network stream, there

arrange two parts to handle the task: online and offline.

Online component : maintains the statistics top-k neighbors and top-k

candidate that identify activity of nodes.

[capture real-time information]

Offline component : find local pattern based on top-k neighbors lists.

[identify patterns]

Method of clustering : maintain small clusters(Local Weight-Edge-based

Pattern, LWEP) based on similarity and further,

clustering small clusters.

- In order to detect clusters, authors want to find local pattern (density) and then clustering those local dense area.
- In order to maintain those local dense area, authors hope to maintain
 edges with the highest weights based on dynamic graph.
- How to maintain those edges with the highest weights?

Scenario

10

(c) Accumulated graph \mathcal{G}_1

Basic structure :

Weight of edges(decay function)

$$w_t^{i,j} \leftarrow w_{t_e}^{i,j} e^{-\lambda(t-t_e)} + \gamma_t^{i,j}$$

Similarity between nodes:

Top-k nodes selection

Main Idea: the computation of LWEPs mainly relies on the neighbors with

the highest weights. If we can preserve a small set of highly

weighted neighbors, no significant information will be lost. That is,

we have the following neighbor selection principle.

For node \boldsymbol{v} : Top-k neighbors: $W_2, W_1;$

Introduce time window.

Local structure detection (LWEP)

Threshold
$$WT(v^i) \triangleq \frac{\sum_{v^j \in \mathcal{WN}(v^i)} WJN(\{v^i, v^j\})}{|\mathcal{WN}(v^i)|}$$

For each node:
$$w^{i,i} = \max_{(v^j, w^{i,j}) \in \mathcal{WN}(v^i)} \{w^{i,j}\}$$

Which edges need to count?

Pick out edges with high weight form top-k neighbors and

top-k candidates after updating.

Cluster generation — merge local patterns(similarity) Over!!!

Summery

FacetNet P&D XXX(increasing)

XXX(graph stream)

More feasible More fast More ...

Zhongjing Yu yuzhongjing@foxmail.com

